PCA, t-SNE, Embedding Compression, High-dimensional Data
Kernel spectral joint embeddings for high-dimensional noisy datasets using duo-landmark integral operators
arxiv.orgยท1d
DRIFT: Data Reduction via Informative Feature Transformation- Generalization Begins Before Deep Learning starts
arxiv.orgยท10h
SlimMoE: Structured Compression of Large MoE Models via Expert Slimming and Distillation
arxiv.orgยท1d
Edge Association Strategies for Synthetic Data Empowered Hierarchical Federated Learning with Non-IID Data
arxiv.orgยท1d
Loading...Loading more...